Thin-film amorphous silicon germanium solar cells with p- and n-type hydrogenated silicon oxide layers
نویسندگان
چکیده
Mixed-phase hydrogenated silicon oxide (SiOx:H) is applied to thin-film hydrogenated amorphous silicon germanium (a-SiGe:H) solar cells serving as both p-doped and n-doped layers. The bandgap of p-SiOx:H is adjusted to achieve a highly-transparent window layer while also providing a strong electric field. Bandgap grading of n-SiOx:H is designed to obtain a smooth transition of the energy band edge from the intrinsic to ndoped layer, without the need of an amorphous buffer layer. With the optimized optical and electrical structure, a high conversion efficiency of 9.41% has been achieved. Having eliminated other doped materials without sacrificing performance, the sole use of SiOx:H in the doped layers of a-SiGe:H cells opens up great flexibility in the design of high-efficiency multi-junction thin-film silicon-based solar cells.
منابع مشابه
Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
Articles you may be interested in Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer Appl. Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon ...
متن کاملRole of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films...
متن کاملImproved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern
To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs disper...
متن کاملHigh - Effi ciency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Refl ector
Thin-fi lm silicon solar cells, including hydrogenated amorphous silicon (a-Si:H) single-junction and amorphous/microcrystalline silicon (a-Si:H/ μ c-Si:H) tandem-junction solar cells, are promising candidates for the global terawatt-scale deployment of photovoltaics thanks to the abundance and non-toxicity of their raw materials, and mature fabrication processes. [ 1 , 2 ] Compared to their tr...
متن کاملAmorphous silicon passivated contacts for diffused junction silicon solar cells
Articles you may be interested in Compositional study of defects in microcrystalline silicon solar cells using spectral decomposition in the scanning transmission electron microscope Appl. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells Appl. Photocurrent increase in n-i-p thin film silicon solar cells by gu...
متن کامل